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Abstract. Elastic constants of superlattices and their surface acoustic waves are theoretically
studied. An exact expression to calculate the surface acoustic wave velocity dispersions is
derived for superlattices of finite thickness consisting of two kinds of layers rigidly stacked
upon each other. The formulations are performed for both free superlattice plates and substrated
superlattices. Numerical calculations for Cu/Al and Cu/Ag systems are compared with those
obtained using the effective elastic constant (EEC) model (Grimsditch M 1985Phys. Rev.B 31
6818). A comparison clarifies the applicability of the EEC model.

1. Introduction

Since the first report of the ‘supermodulus effect’ [1], an anomalous increase of more
than 200% of various elastic properties of metallic superlattices and multilayers, the
elastic properties of metallic superlattices have attracted much attentions [2–5]. Metallic
superlattices are usually prepared by means of sputtering or evaporation [5]. Such
superlattices have a strong tendency to form a ‘pencil-type texture’, i.e. one in which the
grains have a common orientation normal to the film but are randomly oriented within the
film plane [6].

Brillouin scattering from surface acoustic waves has been successfully applied to the
study of the elastic properties of metallic superlattices and multilayers for the past 20 years
[7]. In order to understand their inelastic properties one needs to know the elastic constants
of such superlattices. The effective elastic constants for a periodically laminated structure
of orthorhombic symmetry have been derived by Grimsditch [7, 8]. The effective elastic
constant (EEC) model is valid in the long-wavelength regime, i.e. it can be applicable for
superlattices with much shorter period compared with phonon wavelength. Here ‘period’
means the shortest unit of layers which consist of the constituents of periodically layered
structures. However, the definition of ‘short period’ does not seem to be clear, although
the EEC model is often used in the literature [5, 9]. Experiments usually cover a wide
range of period lengths (10–1000̊A). Therefore, the development of a general formula
of surface acoustic waves in a periodically layered structure beyond the EEC model is
required.

Many theoretical studies of the elastic waves of a superlattice have been carried out in
the last 15 years and this subject is considered to be well established [10–14]. However, in
the conventional theory [11–14] superlattices are supposed to be infinite or semi-infinite
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along the stacking direction, for which one can simplify the theoretical approach by
assuming translational symmetry. In contrast, we consider superlattice plates and substrated
superlattices of finite thickness and discuss the surface elastic waves known as the Rayleigh
wave and the Sezawa waves [10, 15]. Mathematically, the dispersion equation for the surface
waves is equivalent to the condition that the determinant of a 4× 4 boundary condition
matrix is zero. Although our formulation gives both the Rayleigh wave and the Sezawa
waves, we restrict our discussion to the Rayleigh wave in this paper. It is possible to treat
a superlattice as a medium with EECs (the EEC model) [5, 8]. In this approach, the surface
waves can be obtained through much easier calculations than the direct and complicated
calculations performed in the present paper.

Figure 1. The transformation from the cubic crystallographic coordinates(x, y, z) into the (111)
film coordinates(x′, y′, z′). The shaded hexagonal plane indicates the (111) film plane.

Our purpose is to derive the exact dispersion equation for the surface waves in a
superlattice, and consequently to clarify the applicability of the EEC model. We will
consider only cubic materials as constituents of a superlattice and the (111) planes as their
basal plane. Some numerical calculations are performed for Cu/Al and Cu/Ag superlattices
using both approaches.

2. Film geometric elastic constants

We introduce two kinds of coordinate systems: the crystallographic coordinate (x1 = x,
x2 = y, x3 = z) and the film geometric coordinate (x ′1 = x ′, x ′2 = y ′, x ′3 = z′) [6]. The
axis z′ is always normal to the film plane, and thex ′ and y ′ axes are orthogonal but in
arbitrary orientations within the film plane. The transformation from the(x, y, z) coordinate
system to the(x ′, y ′, z′) coordinate system can be symbolically written using the rotational
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matrix A asx ′i = Aijxj . Here and hereafter the usual convention regarding summation on
repeated subscripts is used [15, 16]. The primary elastic modulus tensorC is related to the
film geometric elastic modulus tensorC ′ by the following tensor transformation equation
[15, 16]:

C ′pqrs = ApiAqjArkAslCijkl . (1)

We have only three non-zero components ofC in the cubic system [16]:Ciiii ≡ C11,
Ciijj ≡ C12 andCijij ≡ C44 (i, j = x, y, z, i 6= j ). Using expression (1), we can obtain the
elastic constants for an arbitrary film coordinate system. We discuss the case of the (111)
film plane in the following sections.

The coordinates in the (111) film plane can be derived by transforming the
crystallographic unit vectors(1, 0, 0), (0, 1, 0) and (0, 0, 1) into new unit vectors
(1/
√

6, 1/
√

6,−2/
√

6), (−1/
√

2, 1/
√

2, 0) and (1/
√

3, 1/
√

3, 1/
√

3), and then rotating
around the newz′ axis by an angleθ . The relation between the crystallographic coordinate
system(x, y, z) and the (111) film system(x ′, y ′, z′) is illustrated in figure 1. TheC ′

elastic tensor components in this case are given in table 1. Here we notice the relation
C ′11 − C ′12 = 2C ′66, which ensures the elastic isotropy within the (111) plane. We are
considering evaporated or sputtered films in which numerous grains have a common
orientation normal to the film but are randomly oriented in the film plane [6]. The
θ -dependent parts of the elastic tensor components are smeared in such a situation. The
angular-independent parts completely agree with those given in [5, 6].

Table 1. The elastic constant tensorC′ij in the (111) basal plane (ε = C11− C12− 2C44).

j

i 1(x′x′) 2(y′y′) 3(z′z′) 4(y′z′) 5(z′x′) 6(x′y′)

1(x′x′) C11− 1

2
ε C12+ 1

6
ε C12+ 1

3
ε

sin 3θ

3
√

2
ε −cos 3θ

3
√

2
ε 0

2(y′y′) c11− 1

2
ε C12+ 1

3
ε −sin 3θ

3
√

2
ε

cos 3θ

3
√

2
ε 0

3(z′z′) C11− 2

3
ε 0 0 0

4(y′z′) C44+ 1

3
ε 0

cos 3θ

3
√

2
ε

5(z′x′) C44+ 1

3
ε

sin 3θ

3
√

2
ε

6(x′y′) C44+ 1

6
ε

3. Elastic waves in a film

In the previous section, we discussed the elastic tensors of cubic materials in a film
coordinate. Using the results we can deal with elastic waves in a bulk medium in an
arbitrary coordinate system. Here we treat a film, which is a constituent of a superlattice or
a substrate. At the boundary of each film a propagating elastic wave undergoes reflection
and refraction and it splits into reflected and refracted waves, except at the top and bottom
surfaces, where the refracted waves do not exist, but the incident and reflected waves do.
These are quasi-transverse and quasi-longitudinal waves, which form the surface acoustic
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waves known as the Rayleigh wave and the Sezawa waves. Prior to discussing the surface
acoustic waves, we formulate the elastic wave equations within a film.

The equation of motion in an elastic medium can be written after the description of
Farnell [15] in the form

ρ
∂2up

∂t2
= C ′pqrs

∂2ur

∂xq∂xs
(p, q, r, s = 1, 2, 3) (2)

whereρ is the density of the medium,ur is the rth component of the displacement of the
medium,C ′pqrs is an element of the elastic constant tensor in the film coordinate, andxs
corresponds to thesth Cartesian component in the film coordinate system. In the preceding
section the symbol′ is affixed to variables and tensors in the film coordinate system
(x ′1, x

′
2, x
′
3) ≡ (x ′, y ′, z′). Hereafter, we only treat the quantities in the film coordinate,

so we will drop this symbol.
Since the medium is elastically isotropic in the(x, y) plane, it is enough to restrict

the elastic waves propagating in the(x, z) plane. For the wave with the wavevector
q = (qx, 0, qz) and frequencyω, its displacement at the point(x, y, z) and time t is
expressed as

uα = Uα exp{i(qxx + qzz− ωt)} = Ũα exp(iqzz) (α = x, y, z). (3)

We can discuss the wave equation (2) within each layer of the superlattice by use of the
displacement (3). The elastic waves in a superlattice are obtained by solving these wave
equations with the boundary conditions at each interface.

There have been many theoretical studies of acoustic waves of superlattices [10–14]. It
is well known that the displacements describe a transverse elastic wave and sagittal elastic
waves [11, 12, 15]. In fact, substituting the displacement (3) into equation (2) yields

ρω2

(
Ux
Uz

)
=
(
C̄11q

2
x + C̄44q

2
z (C̄13+ C̄44)qxqz

(C̄13+ C̄44)qxqz C̄44q
2
x + C̄33q

2
z

)(
Ux
Uz

)
(4)

and

ρω2Uy = (C̄66q
2
x + C̄44q

2
z )Uy (5)

whereC̄pq denotes the angular-independent parts of the elastic tensorC ′. Equation (4) gives
the sagittal modes, while the transverse mode is obtained from equation (5). Here we will
treat sagittal waves. For the sake of convenience, we introduce the following parameters:

Q = qz/qx (6)

U = Uz/Ux = Ũz/Ũx (7)

and

ξ2 = ρω2/(C̄44q
2
x ). (8)

Then the elastic wave equation for the sagittal modes (4) can be expressed as

U = − C̄44Q
2+ C̄11− C̄44ξ

2

(C̄13+ C̄44)Q
= − (C̄13+ C̄44)Q

C̄33Q2+ C̄44− C̄44ξ2
. (9)

From equation (9), we have

Q4+ {A− (1+ B)ξ2}Q2+ (1− ξ2)(C − Bξ2) = 0 (10)

whereA, B, andC are defined as

A = C̄11

C̄44
− C̄13

C̄33

(
2+ C̄13

C̄44

)
B = C̄44

C̄33
C = C̄11

C̄33
. (11)
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Equation (10), a quadratic equation ofQ2, gives two solutionsQ2
1 andQ2

2 (|Q2
1| > |Q2

2|)
for a given set ofω andqx . For a given value ofQ2, we have a forward wave(+Q) and a
backward wave(−Q). Consequently equation (10) gives four solutionsQ1, −Q1, Q2 and
−Q2, and equation (9) determines the amplitude ratiosU1, −U1, U2, and−U2 for eachQ.

The elastic waves have eigenvectors given by

a(1, 0, U1)f (Q1z) (12a)

b(1, 0,−U1)f (−Q1z) (12b)

c(1, 0, U2)f (Q2z) (12c)

d(1, 0,−U2)f (−Q2z) (12d)

with

f (Z) = exp(iqxZ). (13)

Here the coefficientsa, b, c, andd are thexth components of the amplitudes(Ũx) for the
corresponding elastic waves. The forward waves are characterized by(U1,Q1) and(U2,Q2)

and the backward waves by(−U1,−Q1) and (−U2,−Q2), respectively. By adjusting the
coefficientsa to d to satisfy the stress-free boundary conditions, one obtains the surface
waves of a film.

4. Elastic waves and surface waves in superlattices

We consider a superlattice occupying a space 0> z > −zL with its top surface atz = 0 and
a substrate occupying a space−zL > z > −zL−ds . The superlattice consists of alternating
layers of thicknessd1 of constituent 1 and thicknessd2 of constituent 2. A unit spatial period
is D = d1+ d2. We distinguish each constituent and a substrate by affixing the superscript
(i) to the elastic constantCkl , the wavevectorqz, the densityρ, the displacementsuα and
Uα; C(i)kl , q(i)z , ρ(i), u(i)α , andU(i)

α (i = 1, 2 or s; s indicates a substrate). The quantitiesQ,
U , andξ may be symbolically distinguished byQi , Ui , andξi .

The lth constituenti is located at−zil > z > −zil − di , where z1l = (l − 1)D,
z2l = z1l + d1 and zs1 = zL. Four elastic waves exist in this region: two forward
waves characterized by(Ui1,Qi1) and (Ui2,Qi2) and two backward waves characterized
by (−Ui1,−Qi1) and (−Ui2,−Qi2), where the subscripti in Qij andUij denotes theith
constituent (i = 1, 2 ors). The displacement vector(u(i)x , 0, u(i)z ) in this case can be written
as (

u(i)x
u(i)z

)
=
(

1 1 1 1
Ui1 −Ui1 Ui2 −Ui2

)
Pi(z+ zil)|u+i,l〉

=
(

1 1 1 1
Ui1 −Ui1 Ui2 −Ui2

)
Pi(z+ zil + di)|u−i,l〉 (14)

where we use the definitions

Pi(z) =


f (Qi1z) 0 0 0

0 f (−Qi1z) 0 0
0 0 f (Qi2z) 0
0 0 0 f (−Qi2z)

 (15)

and

|u±i,l〉 =


a±il
b±il
c±il
d±il

 and |u±s 〉 =


a±s
b±s
c±s
d±s

 . (16)
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Herea+il , b
+
il , c

+
il , andd+il (a+s , b+s , c+s , andd+s ) are the amplitudes referred to the top of the

lth (substrate) layer, anda−il , b
−
il , c

−
il , andd−il (a−s , b−s , c−s , andd−s ) the amplitudes referred to

the bottom of thelth (substrate) layer, respectively. The present treatment is an extension
of that discussed in [10, ch 7.1]; this approach is formally different from those used in
many theoretical studies [11, 12]. Equation (14) elucidates the fact that the amplitudes are
mutually related by

|u−i,l〉 = Pi |u+i,l〉 and |u−s 〉 = Ps |u+s 〉 (17)

with

Pi = Pi(−di) (i = 1, 2 or s). (18)

The displacement vector(u(i)x , 0, u(i)z ) and the stress components must be continuous at
the boundariesz = −(l − 1)D − d1 and z = −lD. These continuity conditions can be
summarized as

T1|u−1,l〉 = T2|u+2,l〉 and T2|u−2,l〉 = T1|u+1,l+1〉 (19)

using the matrixTi (i = 1 or 2) given by

Ti =


1 1 1 1
Ui1 −Ui1 Ui2 −Ui2
αi1 αi1 αi2 αi2
βi1 −βi1 βi2 −βi2

 (20)

with

αij = C̄(i)13 + C̄(i)33QijUij and βij = C̄(i)44(Qij + Uij ). (21)

Let us write the thickness of the superlattice asLN ·D using the total period numberLN .
The boundary condition between the superlattice and the substrate atz = −zL ≡ −LN ·D
is apparently expressed as

T2|u−2,LN 〉 = Ts |u+s 〉 (22)

whereTs is the matrix defined by replacingi with s in equation (20). We have two surfaces
at z = 0 and−LN · D − ds . From equations (17), (19), and (22), the amplitudes of the
elastic waves on the top surface,|u+1,1〉, at z = 0 and those on the bottom surface,|u−s 〉, at
z = −LN ·D − ds can be related through

|u−s 〉 = T −1
s (TsPsT

−1
s )[(T2P2T

−1
2 )(T1P1T

−1
1 )]LNT1|u+1,1〉. (23)

The stress-free boundary conditions at the top and bottom surfaces are summarized into
a compact form of(

A1

AsT
−1
s (TsPsT

−1
s )[(T2P2T

−1
2 )(T1P1T

−1
1 )]LNT1

)
|u+1,1〉 = 0 (24)

with the matrixAi (i = 1 or s) defined by

Ai =
(
αi1 αi1 αi2 αi2
βi1 −βi1 βi2 −βi2

)
. (25)

Hereα andβ are given by equation (21). Equation (24) has a non-trivial solution, when
the determinant of the 4× 4 matrix becomes zero:

det

(
A1

AsT
−1
s (TsPsT

−1
s )[(T2P2T

−1
2 )(T1P1T

−1
1 )]LNT1

)
= 0. (26)

The elastic waves satisfying the above solubility condition (dispersion equation) are the
surface waves of interest. This dispersion equation is the ultimate expression to evaluate the
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surface acoustic waves in various types of superlattices: a plate and a substrated superlattice
of arbitrary thickness. Many theoretical works have only treated semi-infinite superlattices.
However, we have, for instance, the dispersion equation for a superlattice plate by taking
the ds → 0 limit, while the ds → ∞ limit gives the dispersion equation for a superlattice
prepared on a substrate.

5. Results and discussions

In the previous section we have derived the dispersion equation, equation (26), for the
surface waves of a superlattice prepared on a substrate with arbitrary thickness. Solving
these dispersion equations, we can determine theξ1 values of medium 1 defined by
equation (8) for a given set ofω and qx . Defining the bulk transverse wave velocity
in medium 1 by

vT,1 ≡
[
C̄
(1)
44 /ρ

(1)
]1/2

(27)

we obtain

ξ1 = ω/(vT,1qx) = vs/vT,1. (28)

HerevS (=ω/qx) is the surface wave velocity of the superlattice.
We parametrize the wavelength of the surface waveλS (∼=3000 Å in the standard

Brillouin scattering experiment) asLD ·D:

λS = 2π/qx = LD ·D. (29)

Note that the thickness of the superlattice isLN ·D and that of the substrate isds .

Table 2. The elastic constants̄C(i)pq [17], densityρ(i) [18], and transverse wave velocityvT,i
used in the numerical calculations.

i C̄
(i)
11 (109 Pa) C̄

(i)
33 (109 Pa) C̄

(i)
13 (109 Pa) C̄

(i)
44 (109 Pa) ρ(i) (103 kg m−3) vT,i (103 m s−1)

Cu 22.09 23.82 8.74 4.08 8.96 2.13
Al 11.40 11.57 5.97 2.47 2.70 3.02
Ag 15.16 16.15 7.23 2.49 10.50 1.54
Glass [19] 7.85 7.85 1.61 3.12 2.20 3.77

Numerical calculations on the Rayleigh wave velocity using equation (26) for an
arbitrary substrate thicknessds and infinite thickness (ds → ∞) give almost the same
velocities fords/LD ·D > 3.5: a substrate thicker than three times the wavelength of the
surface wave can be regarded as an infinite thickness substrate (∼1 µm in the standard
Brillouin scattering experiment).

Here we calculate the surface wave velocities of sputtered Cu/Al and Cu/Ag
superlattices, which consist of randomly oriented polycrystalline layers stacked upon the
(111) planes. The elastic constantsC̄pq , which are isotropic in the(x, y) plane, are given
in table 2. We will assign the thickness of a Cu layer tod1 and that of an Al layer or an
Ag layer tod2. We have performed numerical calculations both for superlattice plates and
superlattices prepared on glass substrate.

The surface wave velocity of a superlattice plate can be evaluated from equation (26)
taking the limit ofds → 0, while that for a superlattice on glass substrate of infinite thickness
can be evaluated by taking theds →∞ limit. In addition, using the dispersion equation (26),
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(a)

(b)

Figure 2. (a) Relative surface wave velocitiesvS/vT,Cu in Cu/Al superlattice plates of 1.5λS
thickness. The broken lines are the velocities of pure Cu and pure Al. From top to bottom, the
relative velocities in the superlattice plates with thickness ratiod1: d2 = 1: 3, 1:2, 1:1, 2:1, and
3:1, respectively. (b) Relative surface wave velocitiesvS/vT,Cu in Cu/Al superlattices of 1.5λS
thickness on glass substrate. The symbols are as in (a).
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(a)

(b)

Figure 3. (a) Relative surface wave velocitiesvS/vT,Cu in Cu/Ag superlattice plates of 1.5λS
thickness. The broken lines are the velocities of pure Cu and pure Ag. From top to bottom,
the relative velocities in the superlattice plates with thickness ratiod1: d2 = 2: 1, 1:1, and 1:2,
respectively. (b) Relative surface wave velocitiesvS/vT,Cu in Cu/Ag superlattices of 1.5λS
thickness on glass substrate. The symbols as in figure 2(a).
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Table 3. (a) Relative surface wave velocities in Cu/Al superlattice plates (LN/LD = 1.5).
Pure Cu: 0.94169, pure Al: 1.31428,∞: EEC model, Cu:Al= d1: d2. (b) Relative surface
wave velocities in Cu/Al superlattices on glass (LN/LD = 1.5). Pure Cu: 0.97754, pure Al:
1.34300,∞: EEC model, Cu:Al= d1: d2.

(a)

LD Cu:Al = 1:3 Cu:Al= 1:2 Cu:Al= 1:1 Cu:Al= 2:1 Cu:Al= 3:1

2 1.05963 1.02250 0.98685 0.96801 0.96099
6 1.10921 1.06751 1.00825 0.97120 0.95874

12 1.11084 1.06982 1.01056 0.97285 0.96010
18 1.11094 1.07011 1.01102 0.97330 0.96050
30 1.11097 1.07023 1.01127 0.97356 0.96073
54 1.11097 1.07028 1.01137 0.97366 0.96083
90 1.11097 1.07029 1.01139 0.97369 0.96086

270 1.11098 1.07030 1.01140 0.97371 0.96087

∞ 1.11098 1.07030 1.01141 0.97371 0.96087

(b)

LD Cu:Al = 1:3 Cu:Al= 1:2 Cu:Al= 1:1 Cu:Al= 2:1 Cu:Al= 3:1

2 1.06316 1.02616 0.99305 0.98184 0.97915
6 1.13119 1.09002 1.03343 1.00028 0.98989

12 1.13910 1.09888 1.04144 1.00558 0.99371
18 1.14094 1.10088 1.04327 1.00688 0.99469
30 1.14223 1.10223 1.04445 1.00771 0.99532
54 1.14304 1.10303 1.04511 1.00816 0.99567
90 1.14344 1.10341 1.04541 1.00836 0.99582

270 1.14383 1.10378 1.04570 1.00855 0.99595

∞ 1.14403 1.10396 1.04583 1.00863 0.99601

we can treat a superlattice of arbitrary thickness through adjustment of the ratioLN/LD,
whereLD indicates the number of periods included in the surface wavelengthλS defined
by equation (29), whileLN corresponds to the sum of the periods of the superlattice. The
results for Cu/Al superlattices withLN/LD = 1.5, which corresponds to a thickness of
∼4500Å, are summarized in figures 2(a) and (b) and tables 3(a) and (b). Here the surface
wave velocities relative to the bulk transverse wave velocity of Cu,vS/vT,Cu, are shown.
The surface wave velocities for the Cu/Ag superlattices are shown in figures 3(a) and (b)
and tables 4(a) and (b). It is obvious from tables 3(a) and 4(a) and figures 2(a) and 3(a) that
we can expect a constant velocity for short-period (largeLD) superlattices. This indicates
that a short-period superlattice has its own elastic constants as Grimsditch has previously
pointed out [8].

Now we regard a superlattice plate and a superlattice on glass substrate as an effective
medium of thicknessLN ·D with the EECsC̄(e)11 , C̄(e)33 , C̄(e)13 , and C̄(e)44 . The amplitudes of
the displacements for elastic waves|u+e 〉 and |u−e 〉 satisfy

|u−e 〉 = Pe|u+e 〉. (30)

HerePe is the matrix defined byPe = Pe(−LN ·D), from equation (18) replacingi by e
with definition (15). The variableQej (j = 1 or 2) can be calculated from equation (10),
by substituting the EECs into equation (11). The dispersion equation is given by

det

(
Ae

AsT
−1
s (TsPsT

−1
s )(TePeT

−1
e )Te

)
= 0. (31)
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Table 4. (a) Relative surface wave velocities in Cu/Ag superlattice plates (LN/LD = 1.5).
Pure Cu: 0.94169, pure Ag: 0.67996,∞: EEC model, Cu:Ag= d1: d2. (b) Relative surface
wave velocities in Cu/Ag superlattices on glass (LN/LD = 1.5). Pure Cu: 0.97753, pure Ag:
0.70942,∞: EEC model, Cu:Ag= d1: d2.

(a)

LD Cu:Ag= 1:2 Cu:Ag= 1:1 Cu:Ag= 2:1

2 0.75213 0.79633 0.84282
4 0.75080 0.79115 0.83509
6 0.74971 0.78932 0.83334

12 0.74890 0.78859 0.83306
18 0.74876 0.78856 0.83316
30 0.74869 0.78857 0.83323
54 0.74866 0.78858 0.83327
90 0.74866 0.78858 0.83328

136 0.74865 0.78858 0.83328
270 0.74865 0.78858 0.83329

∞ 0.74865 0.78858 0.83329

(b)

LD Cu:Ag= 1:2 Cu:Ag= 1:1 Cu:Ag= 2:1

2 0.79533 0.84235 0.88837
4 0.78862 0.83084 0.87597
6 0.78676 0.82818 0.87309

12 0.78421 0.82543 0.87059
18 0.78315 0.82434 0.86968
30 0.78224 0.82340 0.86889
54 0.78163 0.82275 0.86833
90 0.78132 0.82242 0.86804

136 0.78116 0.82225 0.86790
270 0.78101 0.82208 0.86775

∞ 0.78086 0.82192 0.86761

HereAe and Te can be readily obtained by replacing the variables in equations (25) and
(20). Thus we can calculate the surface wave velocities for a plate and a substrated film with
the EEC model. The results are listed in the columnsLD = ∞ in tables 3(a), (b) and 4(a),
(b). As mentioned already,LD is the number of the periodD contained in the wavelength
of the surface wave. The EEC model corresponds to the case ofLD = ∞, because the
model is based on the assumption that the period is infinitesimal. We can confirm from
these tables that the EEC model surely gives the surface wave velocities in the limit of the
zero period (D→ 0 or LD→∞).

Tables 3(a) and 4(a) show how the surface wave velocity of the superlattice plate
approaches the value calculated from the EEC model as the period decreases. It is apparent
from these tables that the superlattice plates withLD values larger than 50 can be regarded
as a plate with the EECs with excellent accuracy. The EEC model is obviously reasonable
for LD > 12, within an error less than 0.1%. We can expect an increasing error when the
EEC model is applied to superlattice plates with an LD value of less than 10.

Tables 3(b) and 4(b) indicate how the surface wave velocity in the substrated
superlattices approaches the value from the EEC model. The surface wave velocity is
rather susceptible to theLD parameter, in contrast with the case of the corresponding
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plates. The convergence to the EEC velocity is much slower and the velocity obtained from
the shortest period film (LD = 270) is still approaching the EEC value. However, the EEC
model can be applicable for substrated superlattices withLD > 12, if one can ignore a
possible error of up to several per cent.
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